Roles of arginine and canavanine in the synthesis and repression of ornithine transcarbamylase by Escherichia coli.
نویسندگان
چکیده
Conditions were found under which the processes of repression and derepression of ornithine transcarbamylase were separated from the process of enzyme synthesis. After 10 min of arginine deprivation followed by the addition of 2 to 200 mug of l-arginine per ml, a number of strains of Escherichia coli exhibited a significant burst of ornithine transcarbamylase synthesis which lasted 3 to 4 min before the onset of repression. The rapid increase of enzyme activity was shown to require protein synthesis, and was not due to a slow uptake of arginine or induction of an arginine-inducible ornithine transcarbamylase. The capacity of E. coli to synthesize the burst of ornithine transcarbamylase reached a maximum after 10 min of arginine deprivation and then remained constant. The observed increase in enzyme synthesis may reflect the level of unstable messenger ribonucleic acid (RNA) for ornithine transcarbamylase present in the cell at the time protein synthesis was reinitiated. After the addition of arginine in the absence of protein synthesis, the burst of ornithine transcarbamylase decayed with a half-life of about 3 min. The data implied that arginine prevents synthesis of new messenger RNA that can translate this enzyme. Repression of ornithine transcarbamylase by l-canavanine (100 to 200 mug/ml) was observed, and no active enzyme was formed in the presence of this analogue. The action of canavanine as a repressor was distinguished from the inhibitory effect of this compound on protein synthesis.
منابع مشابه
Control of Uracil Synthesis by Arginine in Escherichia Coli.
Ben-Ishai, Ruth (Israel Institute of Technology, Haifa), Michal Lahav, and Ada Zamir. Control of uracil synthesis by arginine in Escherichia coli. J. Bacteriol. 87:1436-1442. 1964.-It is shown that arginine affects uracil biosynthesis in Escherichia coli. The effect of arginine on uracil synthesis was analyzed by following the changes in the level of aspartate transcarbamylase, the first specif...
متن کاملTranslational repression in the arginine system of Escherichia coli.
Translation of bacterial mRNA, divorced from transcription, has been obtained for enzymes of arginine synthesis; evidence has been acquired for repression by arginine at the level of translation. mRNAs for acetylornithinase and ornithine transcarbamylase were accumulated by arginine starvation of argR(+) and argR(-) arginine auxotrophs derived from Escherichia coli K12. Further transcription wa...
متن کاملRepression of enzymes of arginine biosynthesis by L-canavanine in arginyl-transfer ribonucleic acid synthetase mutants of Escherichia coli.
We show that the arginine analogue, l-canavanine, repressed the accumulation of translatable messenger ribonucleic acid (RNA) for three arginine biosynthetic enzymes in Escherichia coli. The method used to determine the level of translatable messenger RNA depended upon measurement of a burst of enzyme synthesis as described previously. E. coli strains with defective arginyltransfer ribonucleic ...
متن کاملControl of arginine biosynthesis in Pseudomonas aeruginosa.
Arginine biosynthesis in Pseudoinonas aeruginosa proceeded via transacetylation of acetylornithine with glutamate ; it resembled Micrococcus glutamicus rather than Escherichia coli. Of four arginine biosynthetic enzymes, N-acetyl-y-glutamokinase, N-acetylornithine glutamate transacetylase, ornithine transcarbamylase and argininosuccinase determined under various conditions of arginine excess an...
متن کاملAcetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis.
Ornithine transcarbamylase is a highly conserved enzyme in arginine biosynthesis and the urea cycle. In Xanthomonas campestris, the protein annotated as ornithine transcarbamylase, and encoded by the argF gene, is unable to synthesize citrulline directly from ornithine. We cloned and overexpressed this X. campestris gene in Escherichia coli and show that it catalyzes the formation of N-acetyl-L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 1968